
How robust apps are made!

● Not fragile, handle problems gracefully

● Consistent user experience, intuitive, easy to use

● Maintainable, easy to change

Let me tell you a story about this curious kid.

He found computers fascinating. He loved to write some special words and the

computer would do things. He wanted to know how that worked so he investigated

everything around it. Programming, networking, hardware, web servers, security, you

name it, this kid looked into it. This curiosity landed him a job. “Wow I get paid to do

my hobby, how cool is that”, he would say.

Soon he was doing more complex tasks. He took pride in making a difference in

people’s work and lives. But then things would break or fail in unexpected ways. The

calls would come in, late at night, or on the weekend, or during a really busy time for

business.

Soon this curious kid was just fighting fires and not making new or better things.

Yes, this curious kid was me!

I want to share with you some of the hard lessons I’ve learned. I want my pain and

suffering to mean something, to help someone avoid the same pitfalls.

I geared this discussion not just for software devs, but towards the people that do

many things, the jack of all trades out there. I know you want your apps to just work

so you can focus on those many other things.

This discussion is also useful for people who don't write code, but you have to serve

it, or secure it, or move it around the network. This should give you some insight into

some of the things code monkeys do (or should do) to keep things running smoothly.

Even you you are using the cloud, you can still run fragile code there, and you must

design and test them properly. But if you got four 9s and want to go to five 9s, this is

not for you.

Let me introduce myself.

I’ve been involved with web apps in one way or another for over 20 years now. Ya

since the very beginning.

I’ve used over 2 dozen programming languages and environments.

I gather requirements, I grok business’s needs, I architect and build systems.

I struggle with CSS and public speaking.

I've done information security and intrusion detection at a bank.

I've written learning management systems from scratch using text files to store data.

I’ve racked servers and I've accidentally run “rm -rf /” as root (it deletes everything, I

mean EVERYTHING)!

I love UX, process improvement, and cats. I hate fighting fires.

My adventure buddy and I have visited over 400 of the 1000 California Historical

Landmarks. We saw 32 on the way up here. 804 is just west of here, the The Wolfskill

Grant, 100 acres given to the UC for an experimental farm in 1937.

Here are the topics. Got two out of the way.

I want this to be an interactive discussion. We have X more minutes together. Thank

you for coming to see me ramble.

I will pause after each and ask for your insight!

There are many more topics we could talk about, but I only have so much time before

they kick me out.

Some one liners: Don't use spaces. Make everything lowercase! Practice Read-only

Fridays.

This is one I see a lot. Have at least two, Production and test. Even for vendor apps.

You need to be able to test upgrades and reconfigurations.

“Read/Write” systems

- Use separate web, database, and mail servers.

- Anything writable. Where you send data to an external system. Yes, even

email. I found a great tool called MailDev that accept any incoming email and

gives you a web-interface to read it.

“Read Only” systems

- Test systems can use read only productions systems like AD, LDAP, and

other lookup or dictionary data sources, API, NTP.

So you can FULLY exercise an application without fear of messing things up! I mean

FULLY. You need to be able to hit every corner of an app with abandon!

Vendor/Community Supported

Lots of common knowledge

Lots of online help

Learned from past mistakes

Save time and money

Security is baked-in

Do one thing well!

Separate and isolate code as much as possible

Allows for testability

Allows for reuse

Removes spaghetti

Unit Testing

Integration Testing

Regression Testing

Load Testing

User Acceptance Testing

UI Testing, manual and/or automated

Half way done!

Source Control

It goes by many names but it is basically a system to track files and changes to those

files.

This is what I did just a few years ago. Don’t do this.

Which one is the right one?

Which one is in production?

Did we fix things in production and not copy them back into our “good” folder?

These are folders with many files? Do you trust the state of those files? Did someone

else mess something up, did you mess something up and now it is going to break in

your next production release?

Use Git!

It’s a quick install on any computer. Command line or GUIs. No complicated

client/server needed. Things like GitHub, Bitbucket and Gitlab are really just offsite

storage that you sync your code too.

The basics are easy, you can do 90% of what you need with 10% of the features.

My favorite part is if any files is changed unexpectedly. When I open up git it will tell

me right away the file has changes and I can simply “discard changes” to get back the

last good version.

Version Numbers

Use them! Make them up.

Use the date (18.8) or 1, 2, 3, 4, 5

or SemVer: X.X.X.X (4.5.2.56).

They will help you when things break. You will be able to tell the difference among

codebases.

“That was fixed in version 2.1”, “The test server has version 3.5, but Prod has 3.6.”.

Releases

Make a deployable package.

Don’t just update a few files to Prod. How can you tell what is there?

Think of how some of the apps you use are packaged and released.

GitHub has a great “Releases” feature.

This is a simple utility I made. I “Released” it. Compiled code, link to the version in

source control. It was actually really easy.

Aka Robots working for you

Continuous Integration, Continuous Deployment, Build Servers.

Setup build profiles that are run automatically so manual steps are not missed.

Like setting up an assembly line. Time consuming to set up but is awesome ones it

gets going.

I currently use JetBrains TeamCity. It cost $1000 a year and pays for itself over and

over

Watches Github for changes

Compiles code

Runs automated tests

Builds and deploys documentation

Builds release package

Deploy to webserver or NuGet server

Alert if break builds.

Save tons of error prone manual steps.

Half way done!

Apps use objects in volatile RAM.

We may need to save that info to long-term storage.

Older methods were to use low level database access methods and lots of boilerplate

code.

Better way is to use an ORM (Object-relational mapping) tool for Relational

databases.

SQL injection nearly possible. That is where a bad actor can run their own sql code.

Or checkout NoSQL. Very simple storage of structured data. MongoDB, AWS

Dynamo DB. Couch DB.

There is a lot that could go wrong here so you need your code to check and handle

those problems.

Capture events and errors as they happen

Know of a problem before it affects too many people.

Better than the “customer early alert system”.

Levels like Debug, Info, Warn, Error, Fatal

This allows you to set those logging events in code, but only turn up the know to

capture them when needed.

Recover gracefully if you can.

Log and alert based on the severity of the problem.

Also if you log to text files, like in a webserver. Those can fill up harddrives.

Ive also seen one not rote and it ended up being a huge 10GB text file. Both times

they crashed the server.

That is Google Cloud Platform Stackdriver Logging on the left.

On the right is Splunk emailing us on a Fatal error is saw.

Another story, quick one this time.

Customer reports a bug

Business flips out: We need to fix this major issue RIGHT NOW.

Me: Well we could do XYZ to solve it

Big boss asks me: how long has that bug been there

Me: Let me look, Hmm that code was last touched about 2 years ago (thank you

source control).

Big boss: How many customers are affected.

Business: Well, just this one as far as we can tell

Big boss: I think it can wait for our normal change management process.

Guess what! My initial solution would have made things worse, but I was given some

breathing room to examine the issue and address it properly. I fixed it once, the right

way.

Take a minute. Thinks things through. Sleep on it. Talk to others. Get others points of

view.

Almost every time I rushed in to do something it has backfired on me. Let the fire burn

a bit!

Done!

Little accommodation for any variations to that flow.

Crash and burns horribly. But our error logging helps dig into this.

Hurts the customer and difficult/time-consuming to diagnose.

Spend all day “firefighting” instead of innovating.

Thank you. Stay curious!

